Main menu

Nucleotide-resolution bacterial pan-genomics with reference graphs

Bacterial genomes follow a U-shaped frequency distribution whereby most genomic loci are either rare (accessory) or common (core) - the alignable fraction of two genomes from a single species might be only 50%. Standard tools therefore analyse mutations only in the core genome, ignoring accessory mutations.

We present a novel pan-genome graph structure and algorithms implemented in the software pandora, which approximates a sequenced genome as a recombinant of reference genomes, detects novel variation and then pan-genotypes multiple samples.

Constructing a reference graph from 578 E. coli genomes, we analyse a diverse set of 20 E. coli isolates. We show, for rare variants, pandora recovers at least 13k more SNPs than single-reference based tools, achieving equal or better error rates with Nanopore as with Illumina data, and providing a stable framework for analysing diverse samples without reference bias. This is a significant step towards comprehensive analyses of bacterial genetic variation.

Authors: Rachel M Colquhoun, Michael B Hall, Leandro Lima, Leah W Roberts, Kerri M Malone, Martin Hunt, Brice Letcher, Jane Hawkey, Sophie George, Louise Pankhurst, Zamin Iqbal

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag