Main menu

Nonlinear control of transcription through enhancer-promoter interactions


Chromosome structure in mammals is thought to regulate transcription by modulating the three-dimensional interactions between enhancers and promoters, notably through CTCF-mediated interactions and topologically associating domains (TADs). However, how chromosome interactions are actually translated into transcriptional outputs remains unclear. To address this question we use a novel assay to position an enhancer at a large number of densely spaced chromosomal locations relative to a fixed promoter, and measure promoter output and interactions within a genomic region with minimal regulatory and structural complexity.

Quantitative analysis of hundreds of cell lines reveal that the transcriptional effect of an enhancer depends on its contact probabilities with the promoter through a non-linear relationship. Mathematical modeling and validation against experimental data further provide evidence that nonlinearity arises from transient enhancer-promoter interactions being memorized into longer-lived promoter states in individual cells, thus uncoupling the temporal dynamics of interactions from those of transcription.

This uncovers a potential mechanism for how enhancers control transcription across large genomic distances despite rarely meeting their target promoters, and for how TAD boundaries can block distal enhancers. We finally show that enhancer strength additionally determines not only absolute transcription levels, but also the sensitivity of a promoter to CTCF-mediated functional insulation.

Our unbiased, systematic and quantitative measurements establish general principles for the context-dependent role of chromosome structure in long-range transcriptional regulation.

Authors: Jessica Zuin, Gregory Roth, Yinxiu Zhan, Julie Cramard, Josef Redolfi, Ewa Piskadlo, Pia Mach, Mariya Kryzhanovska, Gergely Tihanyi, Hubertus Kohler, Peter Meister, Sebastien Smallwood, Luca Giorgetti

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag