Main menu

Nicotinamide mononucleotide (NMN) deamidation by the gut microbiome and evidence for indirect upregulation of the NAD+ metabolome


Treatment with nicotinamide mononucleotide (NMN) is a prominent strategy to address the age-related decline in nicotinamide adenine dinucleotide (NAD+) levels for maintaining aspects of late-life health. It is assumed that exogenous NMN is directly incorporated into NAD+ in mammals by the canonical recycling pathway, however the need for NAD+ is conserved across evolution, including bacteria in the gut microbiome, which can deamidate NMN to nicotinic acid mononucleotide (NaMN).

Here, we use strategic isotope labelling studies to demonstrate a role for the gut microbiome in deamidating orally delivered NMN into NaMN prior to its uptake and incorporation in mammals. Microbiome depletion increased the overall abundance of NAD metabolites, suggesting a competition relationship. Strikingly, treatment with labelled NMN increased the production of unlabelled NAD precursors, with a greater than 3-fold increase in endogenous NR levels in the gut of antibiotics treated animals upon labelled NMN treatment.

These data suggest that exogenous NMN impacts the NAD metabolome through indirect means, rather than through its direct incorporation, including through the production of endogenous NR via an as-yet unidentified pathway, and demonstrate an important role for the gut microbiome in the assimilation of orally delivered NMN.

Authors: Lynn-Jee Kim, Timothy J. Chalmers, Greg C. Smith, Abhirup Das, Eric Wing Keung Poon, Jun Wang, Simon P. Tucker, David A. Sinclair, Lake-Ee Quek, Lindsay E. Wu

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag