Main menu

NCM 2023 Singapore: Identification of m6A RNA modifications at single molecule resolution using nanopore direct RNA-Seq data


RNA modifications such as m6A methylation form an additional layer of complexity in the transcriptome. Nanopore direct RNA sequencing can capture this information in the raw current signal for each RNA molecule, enabling the detection of RNA modifications using supervised machine learning. In this presentation I will introduce m6Anet, a neural-network-based method that leverages the multiple instance learning framework to obtain read-level and site-level m6A modification probabilities. The m6Anet method outperforms existing computational methods, shows similar accuracy as experimental approaches, captures the underlying read-level stoichiometry, and generalizes with high accuracy to different cell lines and species. Finally, I will provide an update on m6A identification using RNA004 with m6Anet.

Authors: Jonathan Göke

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag