Main menu

Nanopore sequencing improves the draft genome of the human pathogenic amoeba Naegleria fowleri


Naegleria fowleri is an environmental protist found in soil and warm freshwater sources worldwide and is known for its ability to infect humans and causing a rapid and mostly fatal primary amoebic meningoencephalitis. When contaminated water enters the nose, the facultative parasite follows the olfactory nerve and enters the brain by crossing the cribriform plate where it causes tissue damage and haemorrhagic necrosis. Although N. fowleri has been studied for several years, the mechanisms of pathogenicity are still poorly understood. Furthermore, there is a lack of knowledge on the genomic level and the current reference assembly is limited in contiguity. To improve the draft genome and to investigate pathogenicity factors, we sequenced the genome of N. fowleri using Oxford Nanopore Technology (ONT). Assembly and polishing of the long reads resulted in a high-quality draft genome whose N50 is 18 times higher than the previously published genome. The prediction of potentially secreted proteins revealed a large proportion of enzymes with a hydrolysing function, which could play an important role during the pathogenesis and account for the destructive nature of primary amoebic meningoencephalitis. The improved genome provides the basis for further investigation unravelling the biology and the pathogenic potential of N. fowleri.

Authors: Nicole Liechti, Nadia Schürch, Rémy Bruggmann, Matthias Wittwer

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag