Main menu

Nanopore sequencing: An enrichment‐free alternative to mitochondrial DNA sequencing


Mitochondrial DNA sequence data is often utilized in disease studies, conservation genetics and forensic identification. The current approaches for sequencing the full mtGenome typically require several rounds of PCR enrichment during Sanger or MPS protocols followed by fairly tedious assembly and analysis. Here we describe an efficient approach to sequencing directly from genomic DNA samples without prior enrichment or extensive library preparation steps. A comparison is made between libraries sequenced directly from native DNA and the same samples sequenced from libraries generated with nine overlapping mtDNA amplicons on the Oxford Nanopore MinION device. The native and amplicon library preparation methods and alternative base calling strategies were assessed to establish error rates and identify trends of discordance between the two library preparation approaches. For the complete mtGenome, 16,569 nucleotides, an overall error rate of approximately 1.00% was observed. As expected with mtDNA, the majority of error was detected in homopolymeric regions. The use of a modified basecaller that corrects for ambiguous signal in homopolymeric stretches reduced the error rate for both library preparation methods to approximately 0.30%. Our study indicates that direct mtDNA sequencing from native DNA on the MinION device provides comparable results to those obtained from common mtDNA sequencing methods and is a reliable alternative to approaches using PCR‐enriched libraries.

Authors: Roxanne R. Zascavage, Kelcie Thorson, John V. Planz

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag