Main menu

Nanodisco: Discovering and exploiting multiple types of DNA methylation from individual bacteria and microbiome using nanopore sequencing


Nanopore sequencing provides a great opportunity for direct detection of chemical DNA modification. However, existing computational methods were either trained for detecting a specific form of DNA modification from one, or a few, specific sequence contexts (e.g. 5-methylcytosine from CpG dinucleotides) or for allowing de novo detection without effectively differentiating between different forms of DNA modifications. As a result, none of these methods supports de novo, systematic study of unknown bacterial methylomes. In this work, by examining three types of DNA methylation in a large diversity of sequence contexts, we observed that nanopore sequencing signal displays complex heterogeneity across methylation events of the same type. To capture this complexity and enable nanopore sequencing for broadly applicable methylation discovery, we generated a training dataset from an assortment of seven bacterial speciesand developed a novel method that couples the identification and fine mapping of the three forms of DNA methylation into a multi-label classification design. We evaluated themethod and then applied it to individual bacteria and mouse gut microbiome for reliable methylation discovery. In addition, we demonstrated in the microbiome analysis the use of DNA methylation for binning metagenomic contigs, associating mobile genetic elements with their host genomes, and for the first time, identifying misassembled metagenomic contigs. This novel method has broad utility for discovering different forms of DNA methylation from bacteria, assisting functional studies of epigenetic regulation in bacteria, and exploiting bacterial epigenomes for more effective metagenomic analyses. Those methods are available through our new tool, nanodisco.

Download the PDF

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag