Main menu

MrHAMER yields highly accurate single molecule viral sequences enabling analysis of intra-host evolution


Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolution given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of long-range genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development.

Here we overcome these technical limitations by developing a nanopore-based long-range viral sequencing pipeline that yields accurate single molecule sequences of circulating virions from clinical samples. We demonstrate its utility in observing the evolution of individual HIV Gag-Pol genomes in response to antiviral pressure. Our pipeline, called Multi-read Hairpin Mediated Error-correction Reaction (MrHAMER), yields >1000s viral genomes per sample at 99.9% accuracy, maintains the original proportion of sequenced virions present in a complex mixture, and allows the detection of rare viral genomes with their associated mutations present at <1% frequency.

This method facilitates scalable investigation of genetic correlates of resistance to both antiviral therapy and immune pressure, and enable the identification of novel host-viral and viral-viral interfaces that can be modulated for therapeutic benefit.

Authors: CM Gallardo, S Wang, DJ Montiel-Garcia, SJ Little, DM Smith, AL Routh, BE Torbett

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag