Main menu

Metagenomics workflow for hybrid assembly, differential coverage binning, transcriptomics and pathway analysis (MUFFIN)


Metagenomics has redefined many areas of microbiology. However, metagenome-assembled genomes (MAGs) are often fragmented, primarily when sequencing was performed with short reads. Recent long-read sequencing technologies promise to improve genome reconstruction. However, the integration of two different sequencing modalities makes downstream analyses complex.

We, therefore, developed MUFFIN, a complete metagenomic workflow that uses short and long reads to produce high-quality bins and their annotations.

The workflow is written by using Nextflow, a workflow orchestration software, to achieve high reproducibility and fast and straightforward use. This workflow also produces the taxonomic classification and KEGG pathways of the bins and can be further used by providing RNA-Seq data (optionally) for quantification and annotation. We tested the workflow using twenty biogas reactor samples and assessed the capacity of MUFFIN to process and output relevant files needed to analyze the microbial community and their function. MUFFIN produces functional pathway predictions and if provided de novo transcript annotations across the metagenomic sample and for each bin.

Authors: Renaud Van Damme, Martin Hölzer, Adrian Viehweger, Bettina Müller, Erik Bongcam-Rudloff, Christian Brandt

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag