Main menu

Long-read assays shed new light on the transcriptome complexity of a viral pathogen

  • Published on: August 14 2020
  • Source: Scientific Reports

Characterization of global transcriptomes using conventional short-read sequencing is challenging due to the insensitivity of these platforms to transcripts isoforms, multigenic RNA molecules, and transcriptional overlaps. Long-read sequencing (LRS) can overcome these limitations by reading full-length transcripts. Employment of these technologies has led to the redefinition of transcriptional complexities in reported organisms.

In this study, we applied LRS platforms from Pacific Biosciences and Oxford Nanopore Technologies to profile the vaccinia virus (VACV) transcriptome.

We performed cDNA and direct RNA sequencing analyses and revealed an extremely complex transcriptional landscape of this virus. In particular, VACV genes produce large numbers of transcript isoforms that vary in their start and termination sites. A significant fraction of VACV transcripts start or end within coding regions of neighbouring genes. This study provides new insights into the transcriptomic profile of this viral pathogen.

Authors: Dóra Tombácz, István Prazsák, Zsolt Csabai, Norbert Moldován, Béla Dénes, Michael Snyder, Zsolt Boldogkői

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

知识产权 Cookie 政策 企业报告 隐私政策 条件条款 前瞻性陈述

关于 Oxford Nanopore

联系我们 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag