Main menu

Linked machine learning classifiers improve species classification of fungi when using error-prone long-reads on extended metabarcodes


The increased usage of long-read sequencing for metabarcoding has not been matched with public databases suited for error-prone long-reads. We address this gap and present a proof-of-concept study for classifying fungal species using linked machine learning classifiers. We demonstrate its capability for accurate classification using labelled and unlabelled fungal sequencing datasets.

We show the advantage of our approach for closely related species over current alignment and k-mer methods and suggest a confidence threshold of 0.85 to maximise accurate target species identification from complex samples of unknown composition. We suggest future use of this approach in medicine, agriculture, and biosecurity.

Authors: Tavish G. Eenjes, Yiheng Hu, Laszlo Irinyi, Minh Thuy Vi Hoang, Leon M. Smith, Celeste C. Linde, Wieland Meyer, Eric A. Stone, John P. Rathjen, Benjamin Mashford, Benjamin Schwessinger

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag