Main menu

Novel method for multiplexed, full-length single-molecule sequencing of human mitochondrial DNA using Cas9-mediated enrichment


Abstract

Traditional methods to reconstruct the mitochondrial DNA (mtDNA) sequence are challenged. They fail to determine variant phase, to capture multiple deletions, and to cover the mitochondrial genome evenly. Here, we describe a method to target, multiplex, and sequence at high coverage full-length human mitochondrial genomes as native single molecules, utilising the RNA-guided DNA endonuclease Cas9. Combining Cas9 induced breaks that define the mtDNA beginning and end of the sequencing reads, as barcodes, we achieve high demultiplexing specificity and delineation of the full-length of the mtDNA, regardless of the structural variant pattern. Data analysis is done with a newly developed pipeline with our software baldur, which efficiently detects single nucleotide heteroplasmy to below 1%, physically determines phase, and accurately disentangles complex deletions. Our workflow is a unique tool for studying mtDNA variation in health and disease, and will accelerate mitochondrial research.

Authors: Ivo Gut

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag