Main menu

Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines


National networks of laboratory-based surveillance of antimicrobial resistance (AMR) monitor resistance trends and disseminate these data to AMR stakeholders. Whole-genome sequencing (WGS) can support surveillance by pinpointing resistance mechanisms and uncovering transmission patterns. However, genomic surveillance is rare in low- and middle-income countries.

Here, we implement WGS within the established Antimicrobial Resistance Surveillance Program of the Philippines via a binational collaboration.

In parallel, we characterize bacterial populations of key bug-drug combinations via a retrospective sequencing survey.

By linking the resistance phenotypes to genomic data, we reveal the interplay of genetic lineages (strains), AMR mechanisms, and AMR vehicles underlying the expansion of specific resistance phenotypes that coincide with the growing carbapenem resistance rates observed since 2010.

Our results enhance our understanding of the drivers of carbapenem resistance in the Philippines, while also serving as the genetic background to contextualize ongoing local prospective surveillance.

Authors: Silvia Argimón, Melissa A. L. Masim, June M. Gayeta, Marietta L. Lagrada, Polle K. V. Macaranas, Victoria Cohen, Marilyn T. Limas, Holly O. Espiritu, Janziel C. Palarca, Jeremiah Chilam, Manuel C. Jamoralín Jr., Alfred S. Villamin, Janice B. Borlasa, Agnettah M. Olorosa, Lara F.T. Hernandez, Karis D. Boehme, Benjamin Jeffrey, Khalil Abudahab, Charmian M. Hufano, Sonia B. Sia, John Stelling, Matthew T.G. Holden, David M. Aanensen, Celia C. Carlos

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag