Main menu

Impact of transposable elements on the genome of the urban malaria vector Anopheles coluzzii


Background Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has colonized the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments is partly due to an increased tolerance to organic pollution and insecticides. While some of the molecular mechanisms for ecological adaptation, including chromosome rearrangements and introgressions, are known, the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet.

Results To better understand the role of TEs in rapid urban adaptation, we sequenced using long-reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated the complete set of TEs and identified 64 previously undescribed families. TEs were non-randomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity. Moreover, we identified several TE insertions providing promoter and transcription factor binding sites to insecticide resistance and immune-related genes.

Conclusions The analysis of multiple genomes sequenced using long-read technologies allowed us to generate the most comprehensive TE annotations in this species to date. We found that TEs have an impact in both the genome architecture and the regulation of functionally relevant genes in An. coluzzii. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.

Authors: Carlos Vargas-Chavez, Neil Michel Longo Pendy, Sandrine E. Nsango, Laura Aguilera, Diego Ayala, Josefa González

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag