Main menu

Highly multiplexed, fast and accurate nanopore sequencing for verification of synthetic DNA constructs and sequence libraries


Synthetic biology utilises the Design-Build-Test-Learn pipeline for the engineering of biological systems. Typically, this requires the construction of specifically designed, large and complex DNA assemblies. The availability of cheap DNA synthesis and automation enables high-throughput assembly approaches, which generates a heavy demand for DNA sequencing to verify correctly assembled constructs. Next-generation sequencing is ideally positioned to perform this task, however with expensive hardware costs and bespoke data analysis requirements few laboratories utilise this technology in-house. Here a workflow for highly multiplexed sequencing is presented, capable of fast and accurate sequence verification of DNA assemblies using nanopore technology. A novel sample barcoding system using PCR is introduced and sequencing data is analysed through a bespoke analysis algorithm. Crucially, this algorithm overcomes the problem of high-error rate nanopore data (which typically prevents identification of single nucleotide variants) through statistical analysis of strand bias, permitting accurate sequence analysis with single-base resolution. As an example, 576 constructs (6 x 96 well plates) were processed in a single workflow in 72 hours (from E. coli colonies to analysed data). Given our procedure’s low hardware costs and highly multiplexed capability, this provides cost effective access to powerful DNA sequencing for any laboratory, with applications beyond synthetic biology including directed evolution, SNP analysis and gene synthesis.

Authors: Andrew Currin, Neil Swainston, Mark S Dunstan, Adrian J Jervis, Paul Mulherin, Christopher J Robinson, Sandra Taylor, Pablo Carbonell, Katherine A Hollywood, Cunyu Yan, Eriko Takano, Nigel S Scrutton, Rainer Breitling

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag