Main menu

Highly accurate barcode and UMI error correction using dual nucleotide dimer blocks allows direct single-cell nanopore transcriptome sequencing


Droplet-based single-cell sequencing techniques have provided unprecedented insight into cellular heterogeneities within tissues. However, these approaches only allow for the measurement of the distal parts of a transcript following short-read sequencing. Therefore, splicing and sequence diversity information is lost for the majority of the transcript. The application of long-read Nanopore sequencing to droplet-based methods is challenging because of the low base-calling accuracy currently associated with Nanopore sequencing. Although several approaches that use additional short-read sequencing to error-correct the barcode and UMI sequences have been developed, these techniques are limited by the requirement to sequence a library using both short- and long-read sequencing.

Here we introduce a novel approach termed single-cell Barcode UMI Correction sequencing (scBUC-seq) to efficiently error-correct barcode and UMI oligonucleotide sequences synthesized by using blocks of dimeric nucleotides.

The method can be applied to correct either short-read or long-read sequencing, thereby allowing users to recover more reads per cell and permits direct single-cell Nanopore sequencing for the first time. We illustrate our method by using species-mixing experiments to evaluate barcode assignment accuracy and evaluate differential isoform usage and fusion transcripts using myeloma and sarcoma cell line models.

Authors: Martin Philpott, Jonathan Watson, Anjan Thakurta, Tom Brown Jr, Tom Brown Sr, Udo Oppermann, Adam P Cribbs

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag