Main menu

High-quality genome sequence resource for Fusarium andiyazi causing pokkah boeng disease of sugarcane in China


Sugarcane pokkah boeng disease (PBD) is emerging as a prevalent foliar disease in China. This airborne disease is caused by the Fusarium species complex. To investigate the diversity and evolution of Fusarium species, we performed the whole-genome sequencing of Fusarium andiyazi YN28 using a combination of the Oxford Nanopore and the Illumina technology. The F. andiyazi YN28 genome was sequenced, assembled, and annotated. A high-quality genome was assembled into 24 contigs with an N50 of 2.80 Mb.

The genome assembly generated a total size of 44.1 Mb with a GC content of 47.64%. A total of 15,508 genes were predicted, including 794 genes related to the carbohydrate-active enzymes, 397 ncRNAs, 155 genes associated with transporter classification, 4,550 genes linked to pathogen-host interactions, and 269 genes involved in effector proteins. Collectively, our results will provide insight into the host-pathogen interaction and will facilitate the breeding of new varieties of sugarcane resistant to PBD.

Authors: Yixue Bao, Kaiyuan Pan, Khan Muhammad Tahir, Baoshan Chen, MUQING ZHANG

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag