Main menu

GPU accelerated Adaptive Banded Event Alignment for rapid comparative Nanopore signal analysis


Nanopore sequencing has the potential to revolutionise genomics by realising portable, real-time sequencing applications, including point-of-care diagnostics and in-the-field genotyping. Achieving these applications requires efficient bioinformatic algorithms for the analysis of raw nanopore signal data. For instance, comparing raw nanopore signals to a biological reference sequence is a computationally complex task despite leveraging a dynamic programming algorithm for Adaptive Banded Event Alignment (ABEA)-a commonly used approach to polish sequencing data and identify non-standard nucleotides, such as measuring DNA methylation. Here, we parallelise and optimise an implementation of the ABEA algorithm (termed f5c) to efficiently run on heterogeneous CPU-GPU architectures. By optimising memory, compute and load balancing between CPU and GPU, we demonstrate how f5c can perform ~3-5X faster than the original implementation of ABEA in the Nanopolish software package. We also show that f5c enables DNA methylation detection on-the-fly using an embedded System on Chip (SoC) equipped with GPUs. Our work not only demonstrates that complex genomics analyses can be performed on lightweight computing systems, but also benefits High-Performance Computing (HPC).
The associated source code for f5c along with GPU optimised ABEA is available at https://github.com/hasindu2008/f5c.

Authors: Hasindu Gamaarachchi, Chun Wai Lam, Gihan Jayatilaka, Hiruna Samarakoon, Jared T Simpson, Martin A Smith, Sri Parameswaran

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag