Main menu

The genome analysis of Tripterygium wilfordii reveals TwCYP712K1 and TwCYP712K2 responsible for oxidation of friedelin in celastrol biosynthesis pathway


Tripterygium wilfordii is a Traditional Chinese Medicine (TCM) from family Celastraceae and celastrol is one of the strongest active ingredients belonging to friedelane-type pentacyclic triterpenoid, which has a large clinical application value of anti-tumor, immunosuppression, and obesity treatment. The first committed biosynthesis step of celastrol is the cyclization of 2, 3-oxidosqualene to friedelin, catalyzed by the oxidosqualene cyclase, while the rest of this pathway is still unclear. In this study, we reported a reference genome assembly of T. wilfordii with high-quality annotation by using a hybrid sequencing strategy (Nanopore, Bionano, Illumina HiSeq, and Pacbio), which obtained a 340.12 Mb total size and contig N50 reached 3.09 Mb.

In addition, we successfully anchored 91.02% sequences into 23 pseudochromosomes using Hi-C technology and the super-scaffold N50 reached 13.03 Mb. Based on integration genome, transcriptom and metabolite analyses, as well as in vivo and in vitro enzyme assays, two CYP450 genes, TwCYP712K1 and TwCYP712K2 have been proven for C-29 position oxidation of friedelin to produce polpunonic acid, which clarifies the second biosynthesis step of celastrol. Syntenic analysis revealed that TwCYP712K1 and TwCYP712K2 derived from the common ancestor.

These results have provided insight into illustrating pathways for both celastrol and other bioactive compounds found in this plant.

Authors: Tianlin Pei, Mengxiao Yan, Yu Kong, Jie Liu, Mengying Cui, Yumin Fang, Binjie Ge, Jun Yang, Qing Zhao

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag