Main menu

Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks


Multiplexing, the simultaneous sequencing of multiple barcoded DNA samples on a single flow cell, has made Oxford Nanopore sequencing cost-effective for small genomes. However, it depends on the ability to sort the resulting sequencing reads by barcode, and current demultiplexing tools fail to classify many reads. Here we present Deepbinner, a tool for Oxford Nanopore demultiplexing that uses a deep neural network trained on 9.1 GB of data, to classify reads based on the raw electrical read signal. This 'signal-space' approach allows for greater accuracy than existing 'base-space' tools (Albacore and Porechop) in which signals have first been converted to DNA base calls, itself a complex problem that can introduce noise into the barcode sequence. To assess Deepbinner and existing tools, we performed multiplex sequencing on 12 amplicons chosen for their distinguishability. This allowed us to establish a ground truth classification for each read based on internal sequence alone. Deepbinner had the lowest rate of unclassified reads (5.2%) and the highest demultiplexing precision (98.4% of classified reads were correctly assigned). It can be used alone (to maximise the number of classified reads) or in conjunction with Albacore (to maximise precision and minimise false positive classifications). We also found cross-sample chimeric reads (0.3%) and evidence of barcode switching (1%) in our dataset, which likely arise during library preparation and may be detrimental for quantitative studies that use multiplexing. Deepbinner is open source (GPLv3) and available at https://github.com/rrwick/Deepbinner.

Authors: Ryan R Wick, Louise M Judd, Kathryn E Holt

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

纳米孔技术

订阅 Nanopore 更新 资源库及发表刊物 什么是 Nanopore 社区

关于 Oxford Nanopore

新闻 公司历程 可持续发展 领导团队 媒体资源和联系方式 投资者 合作者 在 Oxford Nanopore 工作 职位空缺 商业信息 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag