Main menu

The coronavirus proofreading exoribonuclease mediates extensive viral recombination


Coronaviruses (CoVs) emerge as zoonoses and cause severe disease in humans, demonstrated by the SARS-CoV-2 (COVID-19) pandemic. RNA recombination is required during normal CoV replication for subgenomic mRNA (sgmRNA) synthesis and generates defective viral genomes (DVGs) of unknown function. However, the determinants and patterns of CoV recombination are unknown.

Here, we show that divergent β-CoVs SARS-CoV-2, MERS-CoV, and murine hepatitis virus (MHV) perform extensive RNA recombination in culture, generating similar patterns of recombination junctions and diverse populations of DVGs and sgmRNAs.

We demonstrate that the CoV proofreading nonstructural protein (nsp14) 3’-to-5’ exoribonuclease (nsp14-ExoN) is required for normal CoV recombination and that its genetic inactivation causes significantly decreased frequency and altered patterns of recombination in both infected cells and released virions. Thus, nsp14-ExoN is a key determinant of both high fidelity CoV replication and recombination, and thereby represents a highly-conserved and vulnerable target for virus inhibition and attenuation.

Authors: Jennifer Gribble, Andrea J. Pruijssers, Maria L. Agostini, Jordan Anderson-Daniels, James D. Chappell, Xiaotao Lu, Laura J. Stevens, Andrew L. Routh, Mark R. Denison

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag