Main menu

Radiation tolerance of nanopore sequencing technology for life detection on Mars and Europa


The search for life beyond Earth is a key motivator in space exploration. Informational polymers, like DNA and RNA, are key biosignatures for life as we know it. The MinION is a miniature DNA sequencer based on versatile nanopore technology that could be implemented on future planetary missions. A critical unanswered question is whether the MinION and its protein-based nanopores can withstand increased radiation exposure outside Earth’s shielding magnetic field. We evaluated the effects of ionizing radiation on the MinION platform – including flow cells, reagents, and hardware – and discovered limited performance loss when exposed to ionizing doses comparable to a mission to Mars. Targets with harsher radiation environments, like Europa, would require improved radiation resistance via additional shielding or design refinements.

Authors: Mark A. Sutton, Aaron S. Burton, Elena Zaikova, Ryan E. Sutton, William B. Brinckerhoff, Julie G. Bevilacqua, Margaret M. Weng, Michael J. Mumma, Sarah Stewart Johnson

入门指南

购买 MinION 启动包 Nanopore 商城 测序服务提供商 全球代理商

联系我们

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

关于 Oxford Nanopore

Contact us 领导团队 媒体资源和联系方式 投资者 在 Oxford Nanopore 工作 BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Chinese flag