Main menu

nPhase: An accurate and contiguous phasing method for polyploids


While genome sequencing and assembly are now routine, we still do not have a full and precise picture of polyploid genomes. Phasing these genomes, i.e. deducing haplotypes from genomic data, remains a challenge. Despite numerous attempts, no existing polyploid phasing method provides accurate and contiguous haplotype predictions. To address this need, we developed nPhase, a ploidy agnostic pipeline and algorithm that leverage the accuracy of short reads and the length of long reads to solve reference alignment-based phasing for samples of unspecified ploidy (https://github.com/nPhasePipeline/nPhase). nPhase was validated on virtually constructed polyploid genomes of the model species Saccharomyces cerevisiae, generated by combining sequencing data of homozygous isolates. nPhase obtained on average >95% accuracy and a contiguous 1.25 haplotigs per haplotype to cover >90% of each chromosome (heterozygosity rate ≥0.5%). This new phasing method opens the door to explore polyploid genomes through applications such as population genomics and hybrid studies.

Authors: Omar Abou Saada, Andreas Tsouris, Anne Friedrich, Joseph Schacherer

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag