Main menu

Single-fly genome assemblies fill major phylogenomic gaps across the Drosophilidae Tree of Life


Previous genome assemblies of Drosophilidae were restricted to species bred in laboratories, limiting our understanding of this model organism. The authors performed amplification-free nanopore sequencing of single wild flies, to expand the taxonomic diversity of Drosophilidae genomes. Despite the small sample volume of 35 ng DNA per fly, they successfully built 183 new genome assemblies for 179 species, at the affordable cost of US$150 per genome.

Authors: Bernard Y. Kim, Hannah R. Gellert, Samuel H. Church, Anton Suvorov, Sean S. Anderson, Olga Barmina, Sofia G. Beskid, Aaron A. Comeault, K. Nicole Crown, Sarah E. Diamond, Steve Dorus, Takako Fujichika, James A. Hemker, Jan Hrcek, Maaria Kankare, Toru Katoh, Karl N. Magnacca, Ryan A. Martin, Teruyuki Matsunaga, Matthew J. Medeiros, Danny E. Miller, Scott Pitnick, Michele Schiffer, Sara Simoni, Tessa E. Steenwinkel, Zeeshan A. Syed, Aya Takahashi, Kevin H-C. Wei, Tsuya Yokoyama, Michael B. Eisen, Artyom Kopp, Daniel Matute, Darren J. Obbard, Patrick M. O’Grady, Donald K. Price, Masanori J. Toda, Thomas Werner, Dmitri A. Petrov

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag