Main menu

Practical probabilistic and graphical formulations of long-read polyploid haplotype phasing

  • Published on: November 8 2020
  • Source: BioRxiv

Resolving haplotypes in polyploid genomes using phase information from sequencing reads is an important and challenging problem. We introduce two new mathematical formulations of polyploid haplotype phasing: (1) the min-sum max tree partition (MSMTP) problem, which is a more flexible graphical metric compared to the standard minimum error correction (MEC) model in the polyploid setting, and (2) the uniform probabilistic error minimization (UPEM) model, which is a probabilistic analogue of the MEC model. We incorporate both formulations into a long-read based polyploid haplotype phasing method called flopp. We show that flopp compares favorably to state-of-the-art algorithms—up to 30 times faster with 2 times fewer switch errors on 6x ploidy simulated data.

Authors: Jim Shaw, Yun William Yu

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Quick links

Intellectual property Cookie policy Corporate reporting Privacy policy Terms & conditions Accessibility

About Oxford Nanopore

Contact us News Media resources & contacts Investor centre Careers BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag