Main menu

Novel splicing and open reading frames revealed by long-read direct RNA sequencing of adenovirus transcripts


Adenovirus is a common human pathogen that relies on host cell processes for production and processing of viral RNA. Although adenoviral promoters, splice junctions, and cleavage and polyadenylation sites have been characterized using low-throughput biochemical techniques or short read cDNA-based sequencing, these technologies do not fully capture the complexity of the adenoviral transcriptome.

By combining Illumina short-read and nanopore long-read direct RNA sequencing approaches, we mapped transcription start sites and cleavage and polyadenylation sites across the adenovirus genome. The canonical viral early and late RNA cassettes were confirmed, but analysis of splice junctions within long RNA reads revealed an additional 20 novel viral transcripts. These RNAs include seven new splice junctions which lead to expression of canonical open reading frames (ORF), as well as 13 transcripts encoding for messages that potentially alter protein functions through truncations or the fusion of canonical ORFs. In addition, we also detect RNAs that bypass canonical cleavage sites and generate potential chimeric proteins by linking separate gene transcription units.

Our work highlights how long-read sequencing technologies can reveal further complexity within viral transcriptomes.

Authors: Alexander M Price, Katharina E Hayer, Daniel P Depledge, Angus C Wilson, Matthew D Weitzman

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag