Long-read direct RNA sequencing by 5’-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts


The large genome of the migratory locust (Locusta migratoria) accumulates a massive amount of transposable elements (TEs), which show intrinsic transcriptional activities. Hampering the ability to precisely determine full-length RNA transcript sequences are exonized TEs, which produce numerous highly similar fragments that are difficult to resolve using short-read sequencing technology. Here, we applied a 5ʹ-Cap capturing method using Nanopore long-read direct RNA sequencing to characterize full-length transcripts in their native RNA form, and to analyze the TE exonization pattern in the locust transcriptome. Our results revealed the widespread establishment of TE exonization and a substantial contribution of TEs to RNA splicing in the locust transcriptome. The results of the transcriptomic spectrum influenced by Piwi expression indicated that TE-derived sequences were the main targets of Piwi-mediated repression. Furthermore, our study showed that Piwi expression regulates the length of RNA transcripts containing TE-derived sequences, creating an alternative UTR usage. Overall, our results reveal the transcriptomic characteristics of TE exonization in the species characterized by large and repetitive genomes.

Authors: Feng Jiang, Jie Zhang, Qing Liu, Xiang Liu, Huimin Wang, Jing He, Le Kang