Main menu

Improved reference genome for Cyclotella Cryptica CCMP332, a model for cell wall morphogenesis, salinity adaptation, and lipid production in diatoms (Bacillariophyta)


The diatom, Cyclotella cryptica, is a well-established experimental model for physiological studies and, more recently, biotechnology applications of diatoms. To further facilitate its use as a model diatom species, we report an improved reference genome assembly and annotation for C. cryptica strain CCMP332. We used a combination of long- and short-read sequencing to assemble a high-quality and contaminant-free genome.

The genome is 171 Mb in size and consists of 662 scaffolds with a scaffold N50 of 494 kb. This represents a 176-fold decrease in scaffold number and 41-fold increase in scaffold N50 compared to the previous assembly. The genome contains 21,250 predicted genes, 75% of which were assigned putative functions. Repetitive DNA comprises 59% of the genome, and an improved classification of repetitive elements indicated that a historically steady accumulation of transposable elements has contributed to the relatively large size of the C. cryptica genome.

The high-quality C. cryptica genome will serve as a valuable reference for ecological, genetic, and biotechnology studies of diatoms.

Authors: Wade R. Roberts, Kala M. Downey, Elizabeth C. Ruck, Jesse C. Traller, Andrew J. Alverson

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag