Main menu

Haploflow: Strain-resolved de novo assembly of viral genomes


In viral infections often multiple related viral strains are present, due to coinfection or within-host evolution. We describe Haploflow, a de Bruijn graph-based assembler for de novo genome assembly of viral strains from mixed sequence samples using a novel flow algorithm. We assessed Haploflow across multiple benchmark data sets of increasing complexity, showing that Haploflow is faster and more accurate than viral haplotype assemblers and generic metagenome assemblers not aiming to reconstruct strains. Haplotype reconstructed high-quality strain-resolved assemblies from clinical HCMV samples and SARS-CoV-2 genomes from wastewater metagenomes identical to genomes from clinical isolates.

Authors: A. Fritz, A. Bremges, Z.-L. Deng, T.-R. Lesker, J. Götting, T. Ganzenmüller, A. Sczyrba, A. Dilthey, F. Klawonn, A.C. McHardy

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag