Main menu

Complete genome analysis of clinical Shigella strains reveals plasmid pSS1653 with resistance determinants: a triumph of hybrid approach


Shigella is ranked as the second leading cause of diarrheal disease worldwide. Though infection occurs in people of all ages, most of the disease burden constitutes among the children less than 5 years in low and middle income countries. Recent increasing incidence of drug resistant strains make this as a priority pathogen under the antimicrobial resistance surveillance by WHO. Despite this, only limited genomic studies on drug resistant Shigella exists. Here we report the first complete genome of clinical S. flexneri serotype 2a and S. sonnei strains using a hybrid approach of both long-read MinION (Oxford Nanopore Technologies) and short-read Ion Torrent 400 bp sequencing platforms. The utilization of this novel approach in the present study helped to identify the complete plasmid sequence of pSS1653 with structural genetic information of AMR genes such as sulII, tetA, tetR, aph(6)-Id and aph(3′’)-Ib. Identification of AMR genes in mobile elements in this human-restricted enteric pathogen is a potential threat for dissemination to other gut pathogens. The information on Shigella at genome level could help us to understand the genome dynamics of existing and emerging resistant clones.

Authors: Dhiviya Prabaa Muthuirulandi Sethuvel, Balaji Veeraraghavan, Karthick Vasudevan, Naveen Kumar Devanga Ragupathi, Dhivya Murugan, Kamini Walia, Shalini Anandan

Getting started

Buy a MinION starter pack Nanopore store Sequencing service providers Channel partners

Nanopore technology

Subscribe to Nanopore updates Resources and publications What is the Nanopore Community

About Oxford Nanopore

News Company timeline Sustainability Leadership team Media resources & contacts For investors For partners Working at Oxford Nanopore Current vacancies Commercial information BSI 27001 accreditationBSI 90001 accreditationBSI mark of trust
Spanish flag