Assembling plant genomes to greater contiguity

Long-read, PCR-free nanopore sequencing simplifies large genome assembly, enabling resolution of even the highly repetitive regions prevalent in plant genomes.

Steven Salzberg and colleagues used long nanopore reads in their hybrid assembly of the mega-genome of the giant sequoia, generating the largest scaffolds so far seen for any genome.
Impact

The greater contiguity of this new giant sequoia genome assembly will enhance the study of its biology. This knowledge will support conservation and breeding efforts, helping to preserve this tree, the largest on Earth, for generations to come.

Results

The use of long-read sequencing data generated on the MinION™ device significantly improved the assembly of the giant sequoia genome, and facilitated the generation of the largest chromosome scaffold to date.

<table>
<thead>
<tr>
<th>22x</th>
<th>8.2 Gb</th>
<th>348 kb</th>
<th>985 Mb</th>
<th>30-fold</th>
</tr>
</thead>
<tbody>
<tr>
<td>genome depth of coverage with nanopore reads</td>
<td>assembled genome size</td>
<td>increase in N50 from addition of long nanopore reads</td>
<td>largest scaffolded chromosome</td>
<td>reduction in contig number by including nanopore data</td>
</tr>
</tbody>
</table>

HOW?

DNA was extracted from giant sequoia *(Sequoiadendron giganteum)* needle tissue, prepared for sequencing using a ligation-based method, and sequenced for 48 hours on 13 MinION Flow Cells. Hybrid assembly was then performed, with the incorporation of chromatin conformation capture data.

Find out more at: nanoporetech.com/applications/plant-research

Kit

Oxford Nanopore Ligation Sequencing Kit
Available here: store.nanoporetech.com/ligation-sequencing-kit.html

Device

MinION

Tools

MaSuRCA (assembly)

Read more about the assembly method used in this study here: https://nanoporetech.com/resource-centre/sequencing-and-assembling-mega-genomes-mega-trees-giant-sequoia-and-coast-redwood-0

Find out more about analysis pipelines available here: community.nanoporetech.com/knowledge/bioinformatics

Find out more at: nanoporetech.com/applications/plant-research

References