Products
Applications

Applications

Nanopore sequencing offers advantages in all areas of research. Our offering includes DNA sequencing, as well as RNA and gene expression analysis and future technology for analysing proteins.

Learn about applications
View all Applications
Resources Investors Careers News About Store Community Contact Support

Applications Research areas

Infectious disease

Offering comprehensive, real-time insights into infectious disease samples — from pathogen identification and antimicrobial resistance (AMR) profiling to the assembly of high-quality genomes and variant identification — nanopore sequencing delivers immediate access to the critical genomic epidemiology data required for effective control of infectious disease outbreaks. Sequence in the lab or at sample source at a scale to suit your needs, with powerful portable and high-throughput nanopore sequencing devices. 

 

A tiled-amplicon approach to ASFV sequencing to enable near-live monitoring of outbreak situations with rapid turnaround times

Read the article
The availability of a portable sequencing technology opens new doors to travel to outbreak locations, sequence, and analyze samples without needing to transport them Warr A. et al. bioRxiv. DOI:10.1101/2021.12.01.470769 (2021)

Oxford Nanopore sequencing

Traditional short-read technologies

Real-time data streaming
Rapid, real-time sequencing

  • Immediate access to actionable results, including pathogen identification, variant analysis, and antimicrobial resistance
  • Stop sequencing when sufficient data generated — wash and reuse flow cell
  • Comprehensive data analysis tools — including EPI2ME for real-time species identification and AMR profiling

Fixed run time with bulk data delivery

Increased time-to-result; less amenable to time-critical applications

Scalable — portable to high throughput
Portable, deployable sequencing

  • Sequence anywhere with portable, low-cost MinION devices — starting at just $1,000, including sequencing reagents
  • Scale up with modular GridION and PromethION — suitable for ultra-high-throughput sequencing of pathogen and complex metagenomic samples alongside other experiments, such as host genomics
  • Sequence in low-resource environments with limited access to cold storage using the Field Sequencing Kit

Constrained to the lab

Considerable site infrastructure and set-up requirements combined with high platform costs can limit accessibility

Flexible and on-demand
On-demand sequencing

  • Scale your sequencing to your needs — run 1 to 1000s of samples on a single device
  • Sequence what you want, when you want — no sample batching required

Limited flexibility

Sample batching may be required for optimal efficiency, potentially delaying results until sufficient samples are acquired

Unrestricted read length (>4 Mb achieved)
Long-read sequencing

Read length typically 50–300 bp

Short reads do not typically span entire regions of interest, including repeats and structural variants, or full-length RNA transcripts, resulting in fragmented assemblies and ambiguous transcript isoform identification

Streamlined, automatable workflows
Fast sequencing workflows

Laborious workflows

Lengthy sample preparation with requirement for amplification — removing base modifications (e.g. methylation) and increasing the potential for sequencing bias

White paper

Delivering the future of genomic pathogen surveillance

From Ebola, Zika, and COVID-19, to antimicrobial resistant (AMR) bacterial and fungal infections, discover how portable, real-time nanopore sequencing is being utilised by researchers worldwide to support rapid identification and control of infectious disease outbreaks. Read customer case studies on monkeypox virus, poliovirus, and AMR profiling, and find out how nanopore sequencing overcomes the limitations of traditional genomic pathogen surveillance techniques.

Get more infectious disease content, including getting started guides, workflows, white papers, and videos, in our Resource centre.

Outbreak sequencing

Use of nanopore sequencing in outbreak situations

Infectious diseases are an increasing threat, for example in 2019 alone the WHO recorded over 100 outbreaks of 19 different infectious diseases, each posing a potential epidemic or pandemic risk. Portable and scalable, real-time nanopore sequencing has been used to support rapid identification and control of many infectious disease outbreaks across the world, including SARS-CoV-2, Ebola, Zika, antimicrobial-resistant bacteria, and many more.

‘Had this virus caused a severe outbreak or pandemic, our proactive surveillance efforts and vaccine derivation would have provided an approximate 8-week time advantage for vaccine manufacturing’

Rambo-Martin and Keller et al. mSphere e00822-19 (2020)

Case study

Rapid detection of monkeypox virus

Adela Alcolea-Medina and colleagues at the Centre for Clinical Infection & Diagnostics Research, UK, used nanopore technology to develop a metagenomic workflow that detects low-abundance RNA and DNA viruses in different sample types. The workflow required only seven hours from sample receipt to answer — offering a significant advantage over metagenomic detection using traditional short-read sequencing technologies, which typically take three to five days. Testing the workflow on four monkeypox virus (MPXV) research samples, the team were able to detect MPXV in all four samples within 30 minutes of sequencing. The method also demonstrated the potential to differentiate between viruses that present with similar symptoms, with varicella-zoster virus (VZV), which causes chickenpox, detected in one of their research samples.


Find more details on this study and other infectious disease case studies in the pathogen surveillance white paper.
 

‘Emergence of new viral infections with significant public health impact are frequent events, which re-enforces the need for comprehensive methodologies to detect rare, novel or emerging pathogens’

Alcolea-Medina, A. et al. DOI: doi.org/10.2139/ssrn.4132526 (2022).

From species identification to metagenome assembly and variant calling, get detailed information in our application pages.

Get started

Scalable sequencing of infectious disease samples

Fully scalable, real-time nanopore sequencing devices are available to suit all infectious disease sequencing requirements — from in-field pathogen surveillance and characterisation to high-volume analysis of outbreak samples and host genetics.

Compare products
Nanopore sequencing yield chart

Recommended for infectious disease sequencing

GridION

Running up to five independent MinION or Flongle Flow Cells with powerful, integrated compute, GridION provides the flexibility to run multiple experiments, on-demand — ideal for rapid and scalable analysis of pathogen samples and tracking novel variants.

PromethION 48

Combining up to 48 independently addressable, high-capacity flow cells with powerful, integrated compute, PromethION 48 delivers flexible, on-demand access to terabases of sequencing data.

View product

PromethION 24

Flexible, large-scale sequencing using up to 24 independent, high-capacity flow cells.

View product

PromethION 2 & 2 Solo

Offering two independent PromethION Flow Cells for low-cost access to high-output sequencing - ideal for smaller sample number whole-genome and transcriptome projects. Available to preorder now.

View products

MinION

Powerful, portable sequencing of pathogen samples from just $1,000, including sequencing reagents.

View product

MinION Mk1C

Fully integrated sequencing and analysis in a powerful handheld device — sequence at sample source.

View product

Flongle

Adapting MinION and GridION for the most cost-effective access to smaller, routine tests and analyses.

View product

VolTRAX

Portable, USB-powered sample extraction and library preparation device.

View product

Subscribe

Get in touch


Talk to us

If you have any questions about our products or services, chat directly with a member of our sales team.

Talk to us

Book a sales call

To book a call with one of our sales team, please click below.

Book a call